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Abstract

In this paper, we address the problem of designing and implementing low-cost yet effective user interfaces for
interactive computer games that heavily use physically-based animation. Due to the nature of a physics-driven
gaming setup in our system, we require that the interfaces should mimic the tangibility of real-world interfaces to
maximize the playability of the game. Our prototype gaming system, called Space Foosball, is a virtual realization
of the real-world foosball in a space-age setting. The biggest challenge to build our system was to design effective
and robust interfaces to control the motion of user paddles, which in turn drive the physics simulation of the
secondary motion between a soccer ball and the environment, and between a ball and game characters. To meet
our tight development budget and schedule, we opted for off-the-shelf optical sensors as a basis of the controlling
mechanism. These sensors are low-cost but provided a robust solution to our problem. Another important task
to build the Space Foosball was implementing a high-performance game physics engine that suits for simulating
the very dynamic foosball environment. To meet this demand, we designed and implemented an in-house physics
engine, called Virtual Physics, based on a mathematical formulation of Lie groups. In less than a short period of
two months, we successfully built our prototype gaming system which effectively utilizes tangible interfaces while
robustly simulating the game physics environment.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Due to a recent commercial success in the gaming industry,
providing tangible interfaces to games have become more
and more popular. Meanwhile, the explosive development
trends on solid state microchip sensor technologies over the
past two decades [Dun97, Jan03, Bog03] have made it fea-
sible to mass-produce and integrate these sensor devices
into consumer entertainment systems such as Wii from Nin-
tendo [SGR07]. In this paper, we investigate an alternative
form of a tangible gaming interface for an interactive video
game that heavily relies on physically-based animation. As
a proof-of-concept system equipped with tangible interfaces,

we choose the game of foosball and morph it into simulated,
electronic entertainment.

The foosball is a casual tabletop sports game where more
than two people play a miniature-soccer game. The goal
of this game is that each player controls soccer-player-like-
characters mounted along rotating bars to hit and move a ball
into the opponent’s scoring area. In our simulated foosball
game, called Space Foosball, there exist no physical charac-
ters, balls or control-bars but only an LCD screen through
which players can see 3D virtual characters playing in the
world of Space Foosball. Moreover, there are 8 physical rods
on each side of the screen with which players can manip-
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(a) Game Concept (b) Interfacing HW Modules (c) Game Screen (d) Final System

Figure 1: The Space Foosball Game. (a) The Space Foosball is a tangible tabletop implementation of the foosball game.
Players can play the virtual foosball game in a simulated soccer-field with intuitive man/machine interfaces. The simulation
is performed in a physically-plausible manner by our in-house physics engine, Virtual Physics. (b) Players’ manipulation of
control paddles is read by optical sensor modules and used as game inputs. (c) A virtual soccer game is rendered on an LCD
screen by taking advantage of the programable shaders on GPUs. (d) The Space Foosball system in action.

ulate virtual soccer players. These rods provide a tangible
interface to our gaming system (see Figure 1).

An important gaming characteristics in Space Foosball is
that the secondary motion affected by the motion of game
characters should mimic what real-world objects would
make, e.g. a ball bounced off the wall or characters. Thus,
a real-time simulation of virtual world is the crucial compo-
nent of our system. In particular, a fast and reliable perfor-
mance is strongly desired for the employed physics engine.
For this purpose, we have developed our in-house physics
engine, called Virtual Physics, which is based on an elegant
theory on Lie groups and its compact implementation (more
details in Section 4).

Another important aspect of our gaming system is design-
ing optical sensors that transform the motion of players into
that of control bars, thereby controlling the virtual players
in Space Foosball. We have tried various mechanisms to im-
prove the players’ controllability of bars and finally ended
up with an extremely cheap yet quite flexible solution, that
is optical sensors taken out of off-the-shelf PC accessories
(mice) and tweaked, and each of these sensors costs less than
10 USD.

Main Contributions In this paper, we highlight our experi-
ence in developing an affordable, video gaming system that
extensively uses physically-based animation, coupled with
tangible user interfaces. As a proof-of-concept system, we
introduce the Space Foosball game, and believe that this sys-
tem is an attractive arcade-style game to both gamers and
the game industry due to its modest development budget and
high playability. Moreover, we also introduce a Lie group-
based formulation of the rigid body dynamics which is a
very effective mathematical concept to compactly represent
dynamics among solids.

Organization The rest of this paper is organized as follows.
In Section 2, we briefly survey the previous work relevant to
ours. In Section 3, we show the overall design of our sys-
tem, and discuss how our physics engine is implemented in
Section 4. In Section 5, we show experimental results of the
Space Foosball game and conclude the paper in Section 6.

2. Previous Work

In this section, we review the previous work in the areas of
designing tangible user interfaces for interactive applications
and real-time physics engine.

2.1. Tangible Interfaces

Arguably, one of the most successful tangible interfaces may
be a pointing device called a mouse. Through tangible inter-
faces, users can interact with digital information and con-
tents physically. As noted by [IU97, Ish08], tangible user in-
terfaces empower collaboration, learning, and design by us-
ing digital technology and at the same time taking advantage
of human abilities to grasp and manipulate physical objects
and materials. They propose Tangible Bits, a visionary con-
cept to bridge the gap between cyberspace and the physical
environment by making digital information(bits) tangible.

Due to its intuitive characteristic, a variety of tangible in-
terfaces have been considered as effective input and output
devices in many game developments. Curball [KSFS] is a
combination of Curling and Bowling games using tangible
balls as input devices, where a tangible ball with embedded
sensors is thrown physically by an elderly person. The study
reports that tangible interfaces help elderly people enjoy-
ing digital entertainment contents more easily. In the game
Weathergods, tangible interfaces represent bridges to sim-
ulate the physical pieces of the contents in a digital table-
top game [BVvdH∗07]. Also the classical game Warham-
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Figure 2: The Space Foosball Game System Architecture.
Players’ manipulation of the paddles are interpreted by op-
tical sensor modules and transmitted to a PC via USB com-
munication. An integrated micro-controller board processes
analog signals from the optical sensors and converts it to
digital values before sending them to the PC. This digital
input is mapped to dynamic internal variables of the Vir-
tual Physics engine. The Virtual Physics engine broadcasts
the current configurations of all game objects with UDP
communication to which the XNA rendering engine listens
so that it can visualize the current state of a scene in the
Space Foosball game. Meanwhile, certain game states are
sent back to the Virtual Physics engine from the XNA ren-
derer via TCP/IP protocols when needed.

mer 40,000 has been digitally augmented with virtual in-
formation. They try to combine the virtual and the physical
world, and the advantages thereof, i.e. , the endowment of
traditional play environments with virtual information and
novel interaction capabilities [HL09]. The Wii Remote, a
consumer video game controller from Nintendo’s provides
a capability of motion sensing through the use of accelerom-
eter and optical sensor technology [SGR07]. Compared to
classical gaming controllers, it enables gamers to enjoy the
game contents using gesture-based interaction methods.

2.2. Physics Engine

Over the past two decades, tremendous research efforts have
been put into the study of simulating the motion of graph-
ical objects using physics laws, in the area of physically-
based modeling and simulation [WB01, ESHD05]. Some of
these techniques have been relatively matured and adopted
for interactive game development. A set of softwares to per-
form real-time physics simulation is known as physics en-
gine middleware and typical simulation functions included
in a physics engine are rigid and articulated-body dynamics,
particle dynamics, cloth simulation, vehicle dynamics, etc.

Well-known physics engine middleware are Havok, PhysX,
Bullet, ODE, endorphin, OpenTissue, etc [Cou09]. Some of
these middlewares attempt to offer a diverse set of simula-
tion functions whereas others are more focused on a spe-
cific simulation technique; e.g. motion synthesis. However,
these physics middlewares employ rather proven technolo-
gies from the field except for few research prototypes and
thus they are not best suited for experimental game designs
that this paper aims at. Moreover, the performance of exist-
ing physics middlewares is rather slower compared to the
state of the art in the fields.

3. System Design

In this section, we explain the overall framework of our
Space Foosball gaming system, both in software and hard-
ware aspects.

3.1. Software Development Framework

Initiated as an academy-oriented project with a tight devel-
opment schedule of less than two months, at the initial stage
of development, we started looking into possible options
for the game development framework. There are many in-
expensive [Gar09] or even open and free game developing
tools [Mic09, JMo09, LWJ09] and technologies available on
the web that enable independent game developer groups to
create full-blown video games in an agile manner. After as-
sessing the plausibility of various game development frame-
works, we chose Microsoft’s XNA [Mic09] based on its
available resources and community-support, stability, func-
tionality and speed. The XNA game engine is a set of tools
with a managed runtime environment that can rapidly facili-
tate computer game development and management. The un-
derlying philosophy of XNA is to free game designers from
writing "repetitive boilerplate code" and bring different as-
pects of game production into a single system.

Right from the beginning, we intended our system to be
highly versatile and extendible so that we could add fu-
ture gaming components seamlessly. Thus, we wanted to
make the components of our system as modular as possi-
ble, and separated the main game engine part based on Mi-
crosoft XNA, including the main game logics and render-
ing routines, from the physics simulation part based on Vir-
tual Physics, particularly because Microsoft XNA supports
C# and Microsoft DirectX while our game physics engine
is written in C++. In the final system, while the physics en-
gine simulates the virtual foosball environment and broad-
casts the simulated results of game objects by using inter-
process communication protocols at 1KHz update rates, the
XNA-based main game engine takes these data and renders
the game objects as such in a synchronized manner. Figure
2 shows this software architecture.
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Figure 3: The Sensor Modules. An integrated CMOS chip with an LED lightbulb from a PS2 mouse have been modified to
work as a sensor module. With an optics composite of prism and lenses, the sensor module detects the relative motion of the
controller paddle. As the sensing is non-contact type, it is robust to resist the fierce manipulation of excited players.

3.2. Hardware Platform

Our system can intensify player’s gaming experiences by
keeping the tangibility of the real foosball game. So the most
challenging task during the development of the Space Foos-
ball system was designing and physically building a robust,
tangible interface with a modest budget yet in a short amount
of time. To mimic the motion of a paddle of a real foosball
table, we built a sensing module that could simultaneously
measure the rotational and coaxial motion of a cylindrical
rod.

Conventional rotary motion sensors usually require an en-
coder mounted on the moving body and a decoder on the
stationary one to sense their relative motions. But, in our
case, as we need to move the paddle along its axis, the rotary
decoder should also follow the paddle while being strictly
aligned with the rotary encoder. This will introduce some
mechanical complexity on the sensing module as the de-
coder needs to keep its posture. So we had to design a non-
contacting sensing mechanism for both the rotational and ax-
ial motions of the paddle that do not require any coupling
between the paddle and the sensor module.

We tried various sensing methods including two sets of
rotary encoders and decoders linked together with a fric-
tion ball (sensor module taken out from an old ball-mouse),
capacitive sensors by the Hall effects [RSPM01] and op-
tical sensors with two-dimensional imaging modules. Af-

ter repetitive trials and errors, we finally ended up with an
optical sensor module, taken out from Logitech’s optical
mouse [Log09] for its robustness, easiness of control (PS2
interface), fast response, sensing resolution (up to 25 mi-
crons) and low cost. Optical mice work by using an opto-
electronic sensor to take successive pictures of the surface
on which the mice operate. Powerful special-purpose image-
processing chips are embedded in the mouse itself which en-
abled the mouse to detect relative motion on a wide variety
of surfaces, translating the relative motion of the mouse and
eliminating the need for a special mouse-pad. Optical mice
illuminate a surface that they track over, using an LED or
a laser diode. Changes between one frame and the next are
processed by an image processor embedded in the chip and
translated into a movement on the two axes using an optical
flow estimation algorithm [Hor81, BB95]. Figure 3 shows
the internal structure of our sensing modules.

As we can see from Figure 3, the rotational and axial mo-
tion of the cylindrical rod is translated into an x and y motion
of the mouse by the optical sensor and is transmitted to the
micro-controller [Atm09]. The micro-controller unit gathers
sensing information from all 8 paddles and packs them into
a communication packet, then sends to the PC via USB com-
munication. The developed sensing modules had been inte-
grated into a PC with an Intel Core 2 Quad CPU at 2.4 GHz
and 2GB system memory with NVidia GeForce 9500GT,
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and a 42 inches LCD panel. All these hardwares were as-
sembled in a wooden frame which later has been covered
with ABS plastic housing and a heat-treated top glass panel
(see Figure 1). The ABS plastic housing had been fabricated
by a numerically-controlled mock-up prototyping machine.

4. Physics Engine

Simulating the dynamics of a rigid body system implies
computing acceleration of rigid bodies given external forces
applied to the bodies, or vice versa. Hence the representa-
tion of dynamic states and properties including acceleration,
force, and mass is crucial to derive the underlying, govern-
ing equations and to develop efficient solvers for them. In
the case of 3-dimensional problems, it is common to con-
sider linear and angular quantities of the rigid body such as
a position and an orientation as a pair of 3-dimensional vec-
tors, which results in the corresponding pairs of equations,
known as the Newton-Euler equation.

However recent advances in computational dynamics
based on modern differential kinematic geometry provide
more efficient treatments of the linear and angular compo-
nents of dynamics states in a unified manner. In this section,
we introduce the basic concepts of the underlying theory,
which is very little known to the game physics community,
and explain how it can open new avenues to computing the
kinematics and dynamics of rigid body systems efficiently
as well as implementing them in an object-oriented man-
ner. Our in-house physics engine, Virtual Physics, is written
based on these theories.

4.1. Geometric Formulation of the Rigid Body
Dynamics

Newton’s first law of physics for a particle system is

f = mv̇, (1)

where f ,v ∈ ℝ3 and m ∈ ℝ represent force, velocity and
mass of the particle, respectively. In the case of a rigid body,
the relationship between a torque and an angular accelera-
tion also needs to be accounted for as:

τ = Iω̇+ω× Iω, (2)

where τ,ω∈ℝ3 and I ∈ℝ3×3 represent the torque, the angu-
lar velocity and the inertia tensor, respectively. The concepts
from modern differential geometry unify the above equa-
tions in a more compact way as follows:

F = JV̇ +ad∗
V JV, (3)

where F ∈ dse(3) and V ∈ se(3) represent the general-
ized force and velocity of a rigid body. The generalized
velocity combines the linear and angular velocities into
a unified quantity. Similarly, the generalized force repre-
sents the linear force and the torque simultaneously. The

generalized inertia tensor J relates the generalized accel-
eration and the generalized force in Eq.(3). The dual ad-
joint mapping ad∗ plays a similar operation over the gen-
eralized velocity and force like the cross product between
3-dimensional vectors. The details on mathematical back-
grounds of the theory are beyond the scope of this paper,
and the readers are recommended to refer to the work by
[Spi78, MLS94, PBP95, PP99].

Eq.(3) can be also extended to a recursive forward dynam-
ics of articulated rigid body system. We refer to the appendix
A for a description of the algorithm.

4.2. Dynamics Computations

Since the generalized velocity, for example, unifies linear
and angular velocities, it can be represented as a single 6-
dimensional vector by concatenating two 3-dimensional vec-
tors, each representing the linear and angular velocities. Sim-
ilarly, the generalized inertia tensor can be represented as a
6× 6 positive definite matrix and the dual adjoint operation
can be also represented as a 6× 6 matrix. Therefore Eq.(3)
can be regarded as a matrix-vector equation. Note that this
interpretation is similar to the spatial dynamics by [Fea87].

Even though the formulations based on vector and matrix
calculations can still utilize the results from vector and ma-
trix calculus, the formulations related to kinematics and dy-
namics can be represented in its own language, particularly
from a modern differential geometric viewpoint. The formu-
lations based on such a geometric language are not only el-
egant but also compact and thus computationally efficient.
For example, the dual adjoint operation is defined as:

ad∗
V F = (τ×ω+ f × v , f ×ω), (4)

where w,v,τ, f ∈ ℝ3 and V = (w,v),F = (τ, f ) represent the
generalized velocity and force.

Note that the same operation of Eq.(4) in a matrix form is
represented as a 6×6 matrix of:

ad∗
V F =

[
−[w] −[v]

0 −[w]

][
τ

f

]
, (5)

where [w] and [v] are 3× 3 skew symmetric matrices from
w,v ∈ ℝ3. One can clearly see that computing the matrix-
based equation in Eq.(5) requires redundant operations of
building skew symmetric matrices and a multiplication with
a zero matrix whereas the one using Eq.(4) does not.

4.3. Data Structures

Motivated by the results from the previous section, we de-
sign several, efficient geometric data structures to implement
the geometric formulations of the kinematics and dynamics
of a rigid body system.

First we construct an SE3 class to represent the elements
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Figure 4: Realtime simulation of 1120 rigid bodies.

of the special Euclidean group SE(3). The SE3 class con-
sists of variables to describe the position and orientation of
a homogeneous transformation matrix and its induced op-
erators. For the operators on SE3 class, it is sufficient to
consider only multiplication and substitution operators since
there is no natural definition of addition and subtraction rules
on the Lie group SE(3). Hence it is not necessary to overload
the addition or subtraction operators. Also there are several
functions related to SE(3) class such as inversion, exponen-
tial and logarithmic functions, that need to be implemented.

Compared to the 4×4 matrix representation for homoge-
neous transformation, the proposed SE3 class consumes less
memory (i.e. 12 floating point values) and does not require
irrelevant operations, for instance, such as an addition op-
eration, which might be otherwise to be defined if a general
matrix representation has been employed. Moreover the spe-
cial Euclidean group is not a linear vector space. Hence rep-
resenting it as a matrix without any additional information
may result in ambiguous, sometimes incorrect descriptions,
and will eventually degrade a computational efficiency.

To implement a generalized velocity, we design se3 class
as an array of six scalars because se(3) is the Lie algebra
of SE(3) and therefore is a vector space. A dse3 class is
constructed for a generalized force similarly.

Finally we define Inertia and AInertia classes to
represent a generalized inertia tensor and an articulated in-
ertia tensor. A naive representation of the generalized inertia
tensor will be to use a 6× 6 positive definite matrix. How-
ever, from a computational perspective, it is inefficient to
represent the generalized inertia tensor as an arbitrary 6× 6
matrix, since the number of independent elements of a gen-
eralized inertia tensor is only ten: six elements correspond-
ing to the inertial moments, three elements corresponding to
the offset vector, and the remaining element corresponding
to the mass. We therefore design Inertia class as a triple
of these elements. A product operator between Inertia
class and an se3 class element returns a dse3 class ele-
ment that describes the generalized momentum, equivalent
to the product of the generalized inertia tensor and the gen-
eralized velocity. The Inertia class supports coordinate
transformations via a method function Xform which trans-
forms the generalized inertia tensor according to a change in
the reference frame.

Unfortunately Inertia lacks in a memory allocation to

Computational Operation Math Operation
1 dse3← AInertia * se3 η = ĴiSi
2 AInertia← dse3 * dse3 Γ = η⊗η

3 scalar← se3 * dse3 Ω = ⟨Si,η⟩
4 AInertia← scalar * AInertia Θ = Γ/Ω

5 AInertia← AInertia -AInertia Φ = Ĵi−Θ

6 AInertia← AInertia.Xform(SE3) Ψ = Ad ∗
f−1
i−1,i

ΦAd f−1
i−1,i

7 AInertia← Inertia + AInertia Ĵi−1 = Ji−1 +Ψ

Table 1: Operation Flow to Compute Eq.(6).

SE3 f[n]; Inertia I[n]; AIneria J[n];
se3 S[n]; dse3 eta;

eta = J[i] * S[i];
J[i-1] = I[i-1]
+(J[i]-(eta*eta)/(S[i]*eta)).Xform(Inv(f[i]));

Table 2: Code Snippet to Implement Eq.(6).

be applicable to the well-known, articulated inertia method
by [Fea87]. The structure of an articulated inertia tensor
should be represented as a 6× 6 symmetric matrix. Hence
we design the AInertia class to be a 6×6 symmetric ma-
trix, and provide a type casting operator that casts an Iner-
tia class instance to an AInertia class instance. For the
full list of defined operators, we refer to the appendix B.

4.4. Examples and Comparisons

Consider the following equation corresponding to one step
in the articulated inertia formulation of recursive dynamics
in [Kim02]:

Ĵi−1 = Ji−1 +Ad ∗
f−1
i−1,i

(
Ĵi−

ĴiSi⊗ ĴiSi

⟨Si, ĴiSi⟩

)
Ad f−1

i−1,i
. (6)

Table 1 shows an equivalent, step by step operation flow of
Eq.(6). One possible implementation of Eq.(6) is given in
Table 2. Note that the symbols Γ,Ω,Θ and Ψ used in the
mathematical operations field can be implicitly generated in
a computer language implementation, even though they are
not explicitly declared.
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Figure 5: Actual Game Play Shot.

Now, the following is an equation that performs a simi-
lar operation like Eq.(6), but using the spatial operators of
Featherstone’s [Fea87, Mir96].

IA
i−1 = Ii−1 + iX

T
i−1

(
IA
i −

IA
i SiST

i IA
i

ST
i IA

i Si

)
iXi−1, (7)

where Ii and IA
i are an inertia tensor and a spatial articulated

inertia, corresponding to the general and articulated inertia
tensor. Also Si is an element of spatial vector corresponding
to se(3) and iXi−1 is a 6 by 6 spatial transformation ma-
trix corresponding to the adjoint mapping represented in a
matrix form. At a glimpse, Eq.(7) looks similar to Eq.(6).
However an important difference between the two equations
is that Eq.(7) is derived in a matrix form while our equa-
tion in Eq.(6) is in a purely geometric form and thus it better
captures the geometric nature of the underlying dynamics
equation.

Table 3 shows an operation count comparison between the
geometric computation and the matrix-based computation.
As shown in the table, the geometric computations are more
efficient than the general matrix-based approach. To evaluate
Eq.(6), the matrix-based computation requires 643 multipli-
cations and 485 additions while the geometric computation
needs only 360 multiplications and 269 additions.

4.5. The Virtual Physics Engine

Based on the geometric formulations and computations de-
scribed in the previous sections, we developed a prototype
physics engine, Virtual Physics which aims at solving rigid
and articulated rigid body dynamics of complex scenes in
real-time. Key features of Virtual Physics include an efficient

geometric matrix based
computation computation
× + × +

Ad(SE3, se3) 24 18 63 48
ad(se3, se3) 18 12 36 30
Inertia * se3 24 18 36 30

Inertia.Xform() 101 66 459 378
AInertia.Xform() 294 210 459 378

Table 3: Operation Count Comparison.

mathematical formulation based upon Lie group theory, a
flexible software architecture allowing developers to define
arbitrary types of joints and constraints, efficient collision
detection and resolution algorithms, robust numerical inte-
gration of governing differential equations. Figure 4 shows
an example of a stable simulation of stacking and collision
among 1120 rigid bodies in real-time(>60fps). This test runs
on a single-threaded Intel Core 2 Duo 2.4GHz CPU.

5. Results

One of the merits of providing tangible interfaces to a virtual
environment is that player’s gaming experience has no more
to be restricted in the real world even the players still interact
with physical (real) objects. While developing a prototype
game, we tried to maximize this merit and chose the cosmic
space as a background scene, a symbolic representation of
the extension of the physical boundary of the LCD screen
to the infinity. Thus we appropriately dubbed the game as
Space Foosball. As the soccer field is a virtual one, players
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can also choose their virtual team characters based on their
specialties. For example, a tall and thin character is good at
offense but poor at defense while small and fat character is
poor at offense but excellent at defense on the contrary. To
maximize visual and sound effects, we intentionally exag-
gerated the bouncing motion of soccer balls when they hit
characters or the ground, and add realistic sounds and color-
ful particle effects. We also scaled up the ball size when it
goes up in the air to give players a sense of height cues. The
scored goals are automatically counted and displayed on the
screen after a goal ceremony splash screen.

5.1. Integrating Tangible Interfaces into Physics
Engines

Figure 5 shows several screen shots from actual game play.
The control paddles are also used as natural, input devices
during the initial, logo screen and the character selection
screen. Players can start the game by pushing the paddle and
choose between different characters by spinning it. To syn-
chronize physical manipulation of the paddle with a virtual
motion of the game characters, we had to calibrate the sensor
modules to set proper weighting functions while converting
raw sensor signals into input values for the physics simula-
tion engine. By curve-fitting the actual values of rotational
and axial motions with raw sensor signals, we find precise
coefficients for mapping the input values to configurations
of the paddles. The sensor could sense a linear velocity of
up to 50 m/s with 400 samples/cm resolution. The final sys-
tem has gone under a public beta test with questionnaires
collected after game play.

A player-character was modeled as a set of square boxes
in the Virtual Physics world. Hinged at shoulder positions
with angular joints, four character consisted in one row
aligned at the screen position of the physical controller pad-
dle. The long pipe connecting these four character was omit-
ted in the physics simulation in order not to annoy users but
to direct them to focus only on the ball and the game charac-
ters (i.e. the game play itself). Physics variables concerning
dimensions, mass, friction and gravitation were all tuned to
maximize playability not reality.

6. Conclusion

In this paper, we have presented how we design and imple-
ment our prototype game system, Space Foosball. The Space
Foosball has intuitive tangible interfaces driving a physics
simulation that governs the motion of objects in the scene.
Our system was built in less than two months with a total
budget of less than two thousand USD.

One more functionality we want to add to the next ver-
sion of our system is a haptic [PT02] response mechanism.
For example, players can feel and measure the power of a
kick when the ball hits the game character by variable vibra-
tion of the paddles. Moreover, we want to add other char-

acters undergoing different types of physics simulation such
as articulated motion or deformation. This will increase the
complexity of physics simulation, but will add a possibility
of extended playability as well as more fun to the game.
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Appendix A

Consider n numbers of rigid bodies articulated by arbitrary
joints. Let Vi be the generalized velocity of body i, Fi the gen-
eralized force transmitted from body i−1 to body i through
joint i. Also, let fi−1,i = MieSiqi denote the position and ori-
entation of the body i frame relative to the body i−1 frame
with Mi ∈ SE(3),Si ∈ se(3). Further Ji and Ĵi are the gener-
alized inertia tensor and the articulated inertia tensor of body
i. Then recursive forward dynamics algorithm of the articu-
lated rigid body system is as follows:

∙ Initialization :

V0, Fn+1, τ, q, q̇

∙ Forward recursion : for i = 1 to n

fi−1,i = Mie
Siqi

Vi = Ad f−1
i−1,i

Vi−1 +Siq̇i

ci = adVi Siq̇i

∙ Initialization :

Ĵn = Jn

bn = −ad ∗
Vn JnVn +Ad ∗

f−1
n,n+1

Fn+1

Ωn = ⟨Sn, ĴnSn⟩

∙ Backward recursion : for i = n to 2

Ĵi−1 = Ji−1 +Ad ∗
f−1
i−1,i

(
Ĵi−

ĴiSi⊗ ĴiSi

Ωi

)
Ad f−1

i−1,i

bi−1 = −ad ∗
Vi−1 Ji−1Vi−1 +Ad ∗

f−1
i−1,i

(Ĵici +bi)

+
τi−⟨Si, Ĵici +bi⟩

Ωi
Ad ∗

f−1
i−1,i

ĴiSi

Ωi−1 = ⟨Si−1, Ĵi−1Si−1⟩

∙ Forward recursion : for i = 1 to n

q̈i =
1

Ωi

(
τi−⟨Si, Ĵi(Ad f−1

i−1,i
V̇i−1 + ci)+bi⟩

)
V̇i = Ad f−1

i−1,i
V̇i−1 +Siq̈i +adVi Siq̇i

c⃝ The Eurographics Association 2009.
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Appendix B

SE3 class operations and functions
Substitution operation SE3← SE3

Multiplication operation SE3← SE3 ∗ SE3
Inverse mapping SE3← Inv(SE3)

Exponential mapping SE3← Exp(se3)
Log mapping se3← Log(SE3)

Adjoint mapping se3← Ad(SE3, se3)
dse3← dAd(SE3, dse3)

se3 class operations and functions
Substitution operation se3← se3

Addition operation se3← se3 + se3
Multiplication operation se3← scalar ∗ se3

Reciprocal product scalar← se3 ∗ dse3
Adjoint mapping se3← ad(se3, se3)

dse3 class operations and functions
Substitution operation dse3← dse3

Addition operation dse3← dse3 + dse3
Multiplication operation dse3← scalar ∗ dse3

Reciprocal product scalar← dse3 ∗ se3
Adjoint mapping dse3← dad(se3, dse3)
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