
거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 1

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법

Neuro-Symbolic Task Replanning using Large Language

Models

권 민 서 1·김 영 준†

Minseo Kwon1, Young J. Kim†

Abstract We introduce a novel task replanning algorithm that combines a symbolic task planner with a

multimodal Large Language Model (LLM). Our algorithm starts to describe the scene by extracting the

semantic and spatial relationships of objects in the environment through a multimodal LLM and an open-

vocabulary object detection model. Then, the LLM formulates a planning problem in symbolic form based

on the scene description and the user's goal descriptions, which are then processed by the symbolic planner

to create task plans. These plans are converted into low-level executable codes for the robot, with the LLM

performing syntax and semantic checks to ensure validity and facilitate replanning if necessary. We

demonstrate the application of our replanning pipeline using dual UR5e manipulators in various benchmark

tasks, including pick-and-place operations, block-stacking, and block rearrangement.

Keywords: Task Planning, Large Language Models, Replanning

1. Introduction

Integrating Large Language Models (LLMs) into robotic task

planning presents promising results due to their enhanced

commonsense reasoning and generalization abilities. LLMs can

interpret unstructured input, providing a detailed understanding of

tasks based on natural language and enabling more intuitive

interactions between robots and humans.

Previous research leveraging LLMs in robotics has largely focused

on extensive prompting strategies to obtain action sequences from

models directly. However, due to the frequent generation of

hallucinatory outputs, LLMs excel in aiding in solving planning tasks,

such as using an LLM output to guide a search-based planner rather

than solving tasks on their own [1-3]. Consequently, significant

research has focused on integrating LLMs with symbolic planning

formulations like Planning Domain Definition Language (PDDL) [4]

to improve reliability. Some approaches leverage the commonsense

knowledge of LLMs to aid in formulating planning problems [5-8],

while others use LLMs to supplement the results of symbolic planners

[9].

Furthermore, methods such as iteratively reprompting LLMs with

feedback from external evaluators have also been employed to refine

outputs, improving both task relevance and execution accuracy [10,

11]. This approach helps resolve one of the main challenges in LLM-

based task planning—errors during the planning process, such as

syntax or semantic issues in the problem specification [7], which can

result in a failed plan. Without replanning, these errors would cause the

system to halt, requiring manual intervention. In real-world scenarios,

where continuous adaptation by the robot is critical, replanning is

essential for automatically detecting and solving these issues.

In this paper, we propose a novel task replanning pipeline that takes

advantage of LLMs — their capacity to process natural language

queries and commonsense reasoning— while mitigating their

limitations by combining a symbolic planner with a multimodal LLM

and employing a replanning method when planner failures occurred.

Our approach uses a multimodal LLM to analyze semantic

relationships among target objects in the scene and a 2D open-

vocabulary object detection model to obtain the geometric information.

Based on the scene and user-provided goal descriptions, the LLM

encodes the planning problem using PDDL formulation. Given this

problem PDDL and pre-defined domain PDDL, a symbolic PDDL

planner finds a plan for the task, which is later translated into a low-

level code such as Python code with action parameter selection to

invoke motion planning for robot execution.

Throughout this whole process, replanning occurs when a failure is

detected. When a symbolic PDDL planner fails to find a valid plan,

LLM validates syntax and semantic errors in the problem PDDL, and

we replan the task by reprompting the error messages to LLM as error

feedback. If an exception occurs when executing the Python code, we

replan the task by reprompting the exception messages to LLM.

We also conducted experiments using a dual robot manipulator

setup and an LLM across three task planning domains to demonstrate

the effectiveness of our pipeline on diverse and complex robotic tasks.

In summary, the main contributions of our work are:

※ This work was supported in part by the ITRC/IITP program (IITP-2024-
RS-2020-II201460) and NRF (2022R1A2B5B03001385) in Korea.

1. M.S. Student, Dept. of Computer Science and Engineering, Ewha
Womans University, Seoul, Korea (minseo.kwon@ewha.ac.kr)

† Professor, Corresponding author: Dept. of Computer Science and

Engineering, Ewha Womans University, Seoul, Korea
(kimy@ewha.ac.kr)

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 2

- We propose a novel neuro-symbolic task replanning

algorithm for executing various robotics tasks by combining

symbolic planner and multimodal LLM and enabling LLM

as a syntax and semantic checker.

- We demonstrated the utility of our algorithmic pipeline on

real-world robotic tasks. We also highlighted cases where

planning failures occurred and showed how the LLM refined

these failures.

- We also demonstrated the effectiveness of replanning,

showing that success rates increased by up to 31.92%

compared to cases without replanning, while observing how

the occurrence of each failure cause decreases.

The rest of the paper is structured as follows. In Section 2, we

overview relevant work to robot task planning using traditional

methods and LLM-based methods. In Section 3, we outline the overall

task replanning pipeline in four steps. In Section 4, we present the task

planning results in real-world scenarios. Lastly, we conclude the paper

and discuss the future work in Section 5.

2. Related Works

2.1 Symbolic Task Planning

Symbolic task planning is based on a classical approach in AI

planning, where tasks are represented using symbolic languages, such

as PDDL [12]. This approach defines the world as a set of logical states

and actions, where each action has preconditions and effects that

change the state. Symbolic planners search these states, often using

heuristics, to generate a sequence of actions that achieves a given goal.

Additionally, advancements in hierarchical planning and the

integration of symbolic task planning with motion planning (TAMP)

have further improved performance [13]. A key factor for generalizing

TAMP approaches lies between discrete high-level task planning and

continuous low-level motion planning. This involves selecting hybrid

action parameters, such as how to grasp or where to place an object,

that satisfy constraints and control the system's allowable continuous

motions. The downward refinement property assumes that every

solution to the high-level task plan has a corresponding low-level

motion solution. However, this assumption often does not hold in real-

world scenarios, limiting the practical application of TAMP in

dynamic, real-world environments [12].

2.2 LLM-based Robot Task Planning

LLM-based robot task planning utilizes LLMs to enhance

understanding of the real world and generate action sequences that lead

to the goal. For instance, [14] demonstrated that LLMs can effectively

combine language understanding with action grounding, allowing

robots to execute tasks based on their capabilities and real-world

affordances. [15] also employed LLMs, prompting them with

environmental state feedback to generate task plans in Python code

incorporating robot action primitives. Additionally, research has

focused on frameworks that utilize LLMs to generate spatial

relationships between objects and provide motion planning feedback,

addressing TAMP problems [16, 17]. However, despite these

advantages, LLMs often encounter difficulties with large-scale tasks

and may yield unreliable outputs in complex scenarios [2].

Integrating LLM with symbolic planners has also been a significant

research area. [6] and [18] utilized LLMs as translators between the

user's natural language and PDDL, converting natural language

problem descriptions into PDDL problems through few-shot

prompting [19]. However, these methods treat LLMs as translators

and do not deal with situations when LLM-generated problem

descriptions are incorrect. It also struggles with real-world scenarios

where planning problems are not provided in natural language. [7]

addressed TAMP problems by translating natural language problem

descriptions into STL problem specifications and correcting their

syntax and semantic errors through reprompting. However, this

method is not directly applicable to robot manipulation tasks in real-

world scenes.

Building on this, [5] combined LLMs with object detection and

image captioning models to generate a problem specification, then

solved by a symbolic PDDL planner. [9] presented a framework

leveraging LLM's commonsense knowledge in household

environments to reduce plan length generated by a symbolic PDDL

planner. However, these approaches are limited as they primarily

address task planning and do not extend to the low-level details

required for robot execution, such as action parameter selection.

2.3 Corrective Reprompting with LLM

The concept of corrective reprompting [20] with LLMs has been

explored to address planning errors caused by the LLM's hallucinatory

outputs. [21] focused on detecting unmet action precondition errors in

LLM-generated plans and reprompting the LLM to adjust actions

accordingly. [11] incorporated the PDDL plan validator VAL[22] to

identify errors in LLM-generated plans and refine them through

interactive debugging. Additionally, [7] employed a rule-based STL

syntax checker for syntax errors alongside an LLM correction module

for semantic errors.

In contrast, our approach utilizes a symbolic planner to ensure plan

success without relying on external syntax checkers or verifiers.

Moreover, we address both syntax and semantic errors in the planning

problem formulation using a zero-shot approach with our automatic

LLM reprompting.

3. Task Replanning Pipeline

Our task planning algorithm consists of four parts: planning

formulation, task planning with symbolic planner, low-level code

generation, and replanning with syntax and semantic checking. The

overall pipeline is shown in [Fig. 1]. We will go through each step in

the following subsections.

3.1 Planning Formulation

Our objective is to generate a problem PDDL, which can be

formulated as below:

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 3

Fig. 1. Our neuro-symbolic task replanning pipeline. The green blocks represent the use of LLM, and the orange blocks represent symbolic

planning using symbolic languages. Red arrows show two cases of replanning, where the first arrow indicates syntax/semantic errors in problem

formulation, and the second one contains Python exceptions in low-level codes.

𝑃 ≡ < 𝑆, 𝑂, 𝐴, 𝑇, 𝑠0, 𝑆∗ > (1)

where 𝑆 is a finite set of all possible fully observable states, 𝑂 is

environment objects, 𝐴 is a finite set of possible actions, 𝑇: 𝑆 ×

𝐴 → 𝑆 is a deterministic state transition function, 𝑠0 ∈ 𝑆 is an

initial state, and 𝑆∗ ⊂ 𝑆 is a set of goal states.

To enable the robot to interpret the initial scene and encode it into

PDDL, we need to gather information about the types of objects in

the environment and their spatial relationships. We use GPT-4-

Vision as multimodal LLM to simultaneously understand image and

text prompts. By providing a color image from the robot's

perspective together with the prompt, “What objects are on the table?

Tell me each of their appearance and spatial relationships.”, the

LLM can generate a scene description about the objects on the table,

including their relative position, and spatial relationships.

Using this scene description, along with the user-provided goal

task, domain PDDL, and a one-shot example, the LLM formulates

the planning problem 𝑃. Moreover, instead of relying on multiple

in-context examples, we use one-shot prompting [19] to improve the

LLM's output [3]. Furthermore, LLM can obtain information about

PDDL predicates from the domain PDDL.

The objects identified in the scene description become the set

𝑂(e.g., (:objects red_block green_block blue_block)), later serving

as parameters for PDDL actions and predicates. From the spatial

relationships between objects along with the positions of the objects

(e.g., “the red block is on top of the blue block and green block is on

top of red block”), we translate it into predicates (e.g., (on red_block

blue_block) (on green_block red_block)) and this set of predicates

form the initial state 𝑠0. Additionally, based on the user-provided

goal task, the LLM translates the goal into a PDDL goal description

(), forming 𝑆∗ . The remaining components 𝑆 , 𝐴 and 𝑇 are

derived from the domain PDDL.

3.2 Task Planning with Symbolic Planner

Once the planning problem 𝑃 is formulated, the objective is to

use a symbolic task planner to find a policy 𝜋 =

{𝑎1, ⋯ , 𝑎𝑛| ∀𝑎𝑖 ∈ 𝐴} for 𝑃. The generated problem PDDL and

domain PDDL are then put into a search-based symbolic planner to

produce a plan PDDL. We utilize the Fast Downward planner [23],

specifically employing the "seq-opt-fdss-1" configuration.

Planning is successful if the Fast Downward planner generates a

PDDL plan starting from the initial state 𝑠0 and reaches one of the

possible goal states 𝑠𝑔 ∈ 𝑆∗ within the given search time limit.

The planning attempt is considered unsuccessful if the planner fails

to generate such a plan within the time limit.

3.3 Low-Level Code Generation

As mentioned in Section 2.1, to execute the high-level plan

obtained from task planning, it is necessary to search for hybrid

action parameters that satisfy constraints and then call the motion

planner [13]. Similarly, in our pipeline, the plan PDDL generated by

the symbolic planner is converted into Python code. We prompt the

LLM to translate each action 𝑎𝑖 from the plan PDDL into

predefined Python action primitives, such as ‘pick_up_object’ and

‘place_object’ [24]. By calling these primitives, the motion planner

[25] is invoked, and the robot will execute the path. While the PDDL

actions are high-level, including discrete and semantic parameters

such as object names, these action primitives are low-level, requiring

continuous and real-valued parameters, such as the grasp or place

poses for each object. Therefore, the intermediate process of

selecting action parameters for Python action primitives is necessary.

In most TAMP systems where the downward refinement

property is not satisfied, these parameters must satisfy constraints

like collision avoidance and robot joint limits. If any constraints are

violated, the system backtracks and tries alternative high-level plans

[13]. But for simplicity, we assume that the downward refinement

property holds, which means no such constraints exist in our real-

world scene.

The process for determining action parameters is as follows. We

use a 2D open-vocabulary object detection model to compute the

bounding boxes of target objects. Leveraging the scene description

provided by the multimodal LLM, the LLM assigns names to

objects, and these names, along with the detection model, help

generate 2D bounding boxes. These 2D bounding boxes are then

expanded into 3D by integrating depth information from segmented

object masks captured by an RGB-D camera from the robot's

perspective. We employ Grounded-Segment-Anything [26] as the

object detection model, which combines Grounding DINO [27] and

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 4

Fig. 2. Demonstration of a pick-and-place task using a physical robot and our planning pipeline. Initially, three RGB-colored blocks are placed

in a row next to the basket (leftmost image). The goal is to identify the closest block to the basket and drop it into the basket (rightmost image).

Fig. 3. Demonstration of a block stacking. In this case, the blocks are stacked in blue, red, and green from top to bottom (leftmost image). The

goal is to restack the blocks in the order of green, red, and blue from top to bottom on the right side of the table (rightmost image).

Fig. 4. Demonstration of a block rearrangement. Initially, blue, red, and green blocks with the letters Y, Z, and X are arranged from left to right

(leftmost image). The goal is to rearrange the blocks in alphabetical order from left to right: X, Y, and Z (rightmost image).

Segment Anything [28]. Then, a grasp pose selection algorithm

[29] is applied within the 3D bounding boxes, and the resulting

grasp pose serves as the continuous parameter for the 'pick' action.

For the 'place' action, continuous parameters are set based on

predefined positions for different table sections.

3.4 Replanning with Syntax and Semantic Checking

Given that the LLM may produce erroneous outputs, we have

integrated an automatic replanning module to prevent program

interruptions caused by failures. This module detects planning

failures and reprompts the LLM to resolve the issues. Failures

within the pipeline typically stem from two main sources: errors in

problem PDDL generation and low-level code generation.

Errors in problem PDDL generally fall into two categories:

syntax and semantic errors. Syntax errors, such as misplaced

parentheses or incorrect object names in the set 𝑂 , cause the

planner to terminate during the parsing stage due to invalid PDDL

inputs. Semantic errors occur when the initial state 𝑠0 does not

match the actual scene or when the goal description 𝑆∗ misaligns

with the user's intended goal. As a result, the planner is unable to

find a valid path from state 𝑠0 to any goal state 𝑠𝑔 ∈ 𝑆∗ leading

to a dead end. In both cases, LLM is reprompted using the planner

output and a zero-shot Chain of Thought (CoT) [30] prompt,

guiding it to analyze the planner error message. If a syntax error is

detected, the LLM corrects the problem by fixing the incorrect

syntax. When a semantic error is identified, the LLM adjusts 𝑠0

or 𝑆∗ or both, and refines the planning problem 𝑃.

While Python code errors are less frequent than problem PDDL

errors, they typically involve simple runtime issues, such as LLM

using incorrect action names or neglecting to define action

primitive parameters before using it. In such cases, the LLM is

similarly reprompted with the Python exception message and a

zero-shot CoT prompt to correct the code.

4. Experiments

4.1 Experimental Setup

The experiments used an Intel Core i9 CPU and NVIDIA RTX

Ada 6000 GPU. For the physical robot setup, we used UR5e dual

manipulators, each equipped with Robotiq 3F grippers and an Intel

RealSense D455 RGBD camera mounted above the table for a top-

down view. We utilized GPT-4-Turbo [31] as the multimodal

LLM and Fast Downward [23] as the symbolic PDDL planner.

All experiments were based on a PDDL domain inspired by the

well-known Blocksworld domain. Additionally, the table was

divided into six sections, with the position of each section specified

in the prompts.

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 5

4.2 Robot Demonstration

4.2.1 Pick and Place

The first experiment involved a simple pick-and-place task. As

in [Fig. 2], three colored blocks—red, green, and blue—and a

basket were placed on the table. Given the user's goal task, "Move

the closest block into the basket," the system identified the block

nearest to the basket and then planned the corresponding action

sequence.

4.2.2 Block Stacking

The second experiment focused on stacking blocks in a

specified order. As in [Fig. 3], three blocks were initially stacked at

the center of the table. The user's goal was to "Stack the blocks in a

new order at the right side of the table. Red at the bottom, green in

the middle, and blue at the top.", the LLM identified the current

stack order and position (e.g., near the center, left, right) and

generated the problem specification. The robot then unstacked the

blocks from top to bottom and stacked the blocks in the specified

order.

4.2.3 Block Rearrangement

The third experiment was rearranging blocks in alphabetical

order based on letters marked on them. Given the user command

"Rearrange the blocks in alphabetic order from left to right, based

on the letters on the top.", the LLM recognized the letters on each

block and their initial positions. Using its alphabet knowledge, the

LLM generated a problem description to rearrange the blocks in

the order X, Y, and Z from left to right, as shown in [Fig. 4].

This task demonstrated the capability of the LLM to perceive

detailed attributes of the blocks, such as letters and abstract

positions.

4.3 Experiment Results

Table 1. Success and failure rates (%) without replanning

Domain Problem failure Python

failure

Success

rates syntax semantic

Stack 6.6 16.7 3.3 73.3

Rearrange 3.3 3.3 0 93.3

Table 2. Success and failure rates (%) with replanning

Domain Problem failure Python

failure

Success

rates syntax semantic

Stack 0 3.3 0 96.7

Rearrange 0 0 0 100

[Table 1] and [Table 2] summarize the success rates and failure

causes for two domains, Block Stacking and Block Rearrangement,

comparing cases with and without replanning. For each domain,

30 initial scenes and goal descriptions were randomly generated,

and we observed whether problem PDDL generation, task

planning, and low-level code execution succeeded.

Without replanning, the Block Stacking domain had a success

rate of 73.3%. Among the failures, the most common cause was

problem PDDL semantic errors, followed by problem PDDL

syntax errors and failures caused by Python exceptions. In the

Block Rearrangement domain, the success rate was higher at

93.3%, with problem PDDL semantic and syntax errors each

accounting for 3.3% of failures, and no Python failures observed.

The lower success rate in Block Stacking is likely due to difficulties

the multimodal LLM had in accurately capturing the spatial

relationships between stacked blocks for the PDDL initial state.

In both domains, problem PDDL semantic errors were

primarily caused by confusion between the on-table predicate

(indicating a block on the table) and the on predicate (representing

the relationship between blocks). Problem PDDL syntax errors

were typically due to incorrect domain names or improper PDDL

formatting. Python failures arose when the pose variable was used

in the action primitive without being retrieved by the

get_grasp_pose function first.

Limiting the number of replanning attempts to four, we

observed a significant increase in success rates, approaching

almost 100% in both domains. Notably, the rate of problem PDDL

syntax errors and Python failures dropped to zero with replanning,

demonstrating the effectiveness of our LLM-based replanning

method in ensuring plan correctness.

5. Conclusion and Future Work

In this paper, we proposed a neuro-symbolic task replanning

pipeline that integrates multimodal LLMs and symbolic planners

to address challenges in robot task planning. By leveraging LLMs'

commonsense and reasoning abilities, our system generates

problem specifications, uses a symbolic planner to find a plan, and

converts it into low-level code with action parameter selection. We

introduced an automatic replanning module to resolve failures

during planning and demonstrated the system’s effectiveness in

real-world tasks with dual robot manipulators, showing improved

success rates with replanning.

While our approach assumes the downward refinement

property for simple scenarios, it does not fully account for real-

world complexities. Future work will focus on developing a

complete TAMP algorithm that handles cases where downward

refinement does not hold, addressing these real-world constraints.

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 6

References

[1] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M.

Verma, S. Bhambri, L. Saldyt, and A. Murthy, "LLMs Can't Plan,

But Can Help Planning in LLM-Modulo Frameworks," arXiv

preprint arXiv:2402.01817, 2024, DOI:

10.48550/arXiv.2402.01817.

[2] K. Valmeekam, M. Marquez, S. Sreedharan, and S.

Kambhampati, "On the planning abilities of large language

models-a critical investigation," in Advances in Neural

Information Processing Systems, pp. 75993-76005, 2023.

[3] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T.

Lozano-Pérez, and L. P. Kaelbling, "PDDL planning with

pretrained large language models," in NeurIPS 2022 foundation

models for decision making workshop, New Orleans, USA, 2022.

[4] M. Fox and D. Long, "PDDL2. 1: An extension to PDDL for

expressing temporal planning domains," Journal of artificial

intelligence research, vol. 20, pp. 61-124, December 2003, DOI:

10.1613/jair.1129.

[5] K. Shirai, C. C. Beltran-Hernandez, M. Hamaya, A. Hashimoto,

S. Tanaka, K. Kawaharazuka, K. Tanaka, Y. Ushiku, and S. Mori,

"Vision-language interpreter for robot task planning," in 2024

IEEE International Conference on Robotics and Automation

(ICRA), Yokohama, Japan, pp. 2051-2058, 2024, DOI:

10.1109/ICRA57147.2024.10611112.

[6] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P.

Stone, "Llm+ p: Empowering large language models with

optimal planning proficiency," arXiv preprint arXiv:2304.11477,

2023, DOI: 10.48550/arXiv.2304.11477.

[7] Y. Chen, J. Arkin, C. Dawson, Y. Zhang, N. Roy, and C. Fan,

"Autotamp: Autoregressive task and motion planning with llms

as translators and checkers," in 2024 IEEE International

Conference on Robotics and Automation (ICRA), Yokohama,

Japan, pp. 6695-6702, 2024, DOI:

10.1109/ICRA57147.2024.10611163.

[8] M. S. Sakib and Y. Sun, "Consolidating Trees of Robotic Plans

Generated Using Large Language Models to Improve

Reliability," arXiv preprint arXiv:2401.07868, 2024, DOI:

10.48550/arXiv.2401.07868.

[9] R. Arora, S. Singh, K. Swaminathan, A. Datta, S. Banerjee, B.

Bhowmick, K. M. Jatavallabhula, M. Sridharan, and M. Krishna,

"Anticipate & Act: Integrating LLMs and Classical Planning for

Efficient Task Execution in Household Environments," in

International Conference on Robotics and Automation,

Yokohama, Japan, 2024, DOI:

10.1109/ICRA57147.2024.10611164.

[10] Z. Zhou, J. Song, K. Yao, Z. Shu, and L. Ma, "Isr-llm: Iterative

self-refined large language model for long-horizon sequential

task planning," in 2024 IEEE International Conference on

Robotics and Automation (ICRA), Yokohama, Japan, pp. 2081-

2088, 2024, DOI: 10.1109/ICRA57147.2024.10610065.

[11] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and

M. Katz, "Generalized planning in pddl domains with pretrained

large language models," in Proceedings of the AAAI Conference

on Artificial Intelligence, Vancouver, Canada, pp. 20256-20264,

2024, DOI: 10.1609/aaai.v38i18.30006.

[12] S. M. LaValle, Planning algorithms, 1 ed. Cambridge university

press, 2006.

[13] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P.

Kaelbling, and T. Lozano-Pérez, "Integrated task and motion

planning," Annual review of control, robotics, and autonomous

systems, vol. 4, no. 1, pp. 265-293, May 2021, DOI:

10.1146/annurev-control-091420-084139.

[14] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,

C. Finn, C. Fu, K. Gopalakrishnan, and K. Hausman, "Do as i

can, not as i say: Grounding language in robotic affordances,"

arXiv preprint arXiv:2204.01691, 2022, DOI:

10.48550/arXiv.2204.01691.

[15] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,

D. Fox, J. Thomason, and A. Garg, "Progprompt: Generating

situated robot task plans using large language models," in 2023

IEEE International Conference on Robotics and Automation

(ICRA), London, United Kingdom, pp. 11523-11530, 2023, DOI:

10.1109/ICRA48891.2023.10161317.

[16] Y. Ding, X. Zhang, C. Paxton, and S. Zhang, "Task and motion

planning with large language models for object rearrangement,"

in 2023 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Detroit, USA, pp. 2086-2092, 2023,

DOI: 10.1109/IROS55552.2023.10342169.

[17] S. Wang, M. Han, Z. Jiao, Z. Zhang, Y. N. Wu, S.-C. Zhu, and H.

Liu, "LLM3: Large Language Model-based Task and Motion

Planning with Motion Failure Reasoning," arXiv preprint

arXiv:2403.11552, 2024, DOI: 10.48550/arXiv.2403.11552.

[18] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh, "Translating

natural language to planning goals with large-language models,"

arXiv preprint arXiv:2302.05128, 2023, DOI:

10.48550/arXiv.2302.05128.

[19] T. B. Brown, "Language models are few-shot learners," arXiv

preprint arXiv:2005.14165, 2020, DOI:

10.48550/arXiv.2005.14165.

[20] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B.

Kristensen, K. Darvish, A. Aspuru-Guzik, F. Shkurti, and A.

Garg, "Errors are useful prompts: Instruction guided task

programming with verifier-assisted iterative prompting," arXiv

preprint arXiv:2303.14100, 2023, DOI:

10.48550/arXiv.2303.14100.

[21] S. S. Raman, V. Cohen, I. Idrees, E. Rosen, R. Mooney, S. Tellex,

and D. Paulius, "CAPE: Corrective Actions from Precondition

Errors using Large Language Models," in 2024 IEEE

거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 7

International Conference on Robotics and Automation (ICRA),

Yokohama, Japan, 2024, DOI:

10.1109/ICRA57147.2024.10611376.

[22] R. Howey, D. Long, and M. Fox, "VAL: Automatic plan

validation, continuous effects and mixed initiative planning using

PDDL," in 16th IEEE International Conference on Tools with

Artificial Intelligence, Boca Raton, USA, pp. 294-301, 2004,

DOI: 10.1109/ICTAI.2004.120.

[23] M. Helmert, "The fast downward planning system," Journal of

Artificial Intelligence Research, vol. 26, pp. 191-246, July 2006,

DOI: 10.1613/jair.1705.

[24] S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, "Chatgpt

for robotics: Design principles and model abilities," IEEE Access,

vol. 12, pp. 55682-55696, April 2024, DOI:

10.1109/ACCESS.2024.3387941.

[25] S. Chitta, I. Sucan, and S. Cousins, "Moveit![ros topics]," IEEE

robotics & automation magazine, vol. 19, no. 1, pp. 18-19,

March 2012, DOI: 10.1109/MRA.2011.2181749.

[26] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang,

Y. Chen, and F. Yan, "Grounded sam: Assembling open-world

models for diverse visual tasks," arXiv preprint

arXiv:2401.14159, 2024, DOI: 10.48550/arXiv.2401.14159.

[27] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang,

H. Su, and J. Zhu, "Grounding dino: Marrying dino with

grounded pre-training for open-set object detection," arXiv

preprint arXiv:2303.05499, 2023, DOI:

10.48550/arXiv.2303.05499.

[28] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L.

Gustafson, T. Xiao, S. Whitehead, A. C. Berg, and W.-Y. Lo,

"Segment anything," in Proceedings of the IEEE/CVF

International Conference on Computer Vision, Paris, France, pp.

4015-4026, 2023, DOI: 10.1109/ICCV51070.2023.00371.

[29] A. Ten Pas and R. Platt, "Using geometry to detect grasp poses

in 3d point clouds," Robotics Research: Volume 1, pp. 307-324,

2018, DOI: 10.1007/978-3-319-51532-8_19.

[30] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, "Large

language models are zero-shot reasoners," in Advances in neural

information processing systems, New Orleans, USA, pp. 22199-

22213, 2022.

[31] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.

Aleman, D. Almeida, J. Altenschmidt, S. Altman, and S. Anadkat,

"Gpt-4 technical report," arXiv preprint arXiv:2303.08774, 2023,

DOI: 10.48550/arXiv.2303.08774.

권 민 서
2024 이화여자대학교 컴퓨터공학과

학사

2024~ 현재 이화여자대학교 컴퓨터

공학과 석사 과정

관심분야: Robot Task Planning

김 영 준
1993 서울대학교 계산통계학과 학사

1996 서울대학교 계산통계학과 석사

2000 Purdue University, Computer

Science 박사

2003 University of North Carolina at

Chapel Hill 박사후 연구원

2003~ 현재 이화여자대학교 컴퓨터

공학과 교수

관심분야: Robot Motion Planning, Haptic Rendering, Physically-

based Animation, Geometric Modeling

