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Abstract We introduce a novel task replanning algorithm that combines a symbolic task planner with a 

multimodal Large Language Model (LLM). Our algorithm starts to describe the scene by extracting the 

semantic and spatial relationships of objects in the environment through a multimodal LLM and an open-

vocabulary object detection model. Then, the LLM formulates a planning problem in symbolic form based 

on the scene description and the user's goal descriptions, which are then processed by the symbolic planner 

to create task plans. These plans are converted into low-level executable codes for the robot, with the LLM 

performing syntax and semantic checks to ensure validity and facilitate replanning if necessary. We 

demonstrate the application of our replanning pipeline using dual UR5e manipulators in various benchmark 

tasks, including pick-and-place operations, block-stacking, and block rearrangement. 
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1. Introduction 
 

Integrating Large Language Models (LLMs) into robotic task 

planning presents promising results due to their enhanced 

commonsense reasoning and generalization abilities. LLMs can 

interpret unstructured input, providing a detailed understanding of 

tasks based on natural language and enabling more intuitive 

interactions between robots and humans. 

Previous research leveraging LLMs in robotics has largely focused 

on extensive prompting strategies to obtain action sequences from 

models directly. However, due to the frequent generation of 

hallucinatory outputs, LLMs excel in aiding in solving planning tasks, 

such as using an LLM output to guide a search-based planner rather 

than solving tasks on their own [1-3].  Consequently, significant 

research has focused on integrating LLMs with symbolic planning 

formulations like Planning Domain Definition Language (PDDL) [4] 

to improve reliability. Some approaches leverage the commonsense 

knowledge of LLMs to aid in formulating planning problems [5-8], 

while others use LLMs to supplement the results of symbolic planners 

[9].  

Furthermore, methods such as iteratively reprompting LLMs with 

feedback from external evaluators have also been employed to refine 

outputs, improving both task relevance and execution accuracy [10, 

11]. This approach helps resolve one of the main challenges in LLM-

based task planning—errors during the planning process, such as 

syntax or semantic issues in the problem specification [7], which can 

result in a failed plan. Without replanning, these errors would cause the 

system to halt, requiring manual intervention. In real-world scenarios, 

where continuous adaptation by the robot is critical, replanning is 

essential for automatically detecting and solving these issues. 

In this paper, we propose a novel task replanning pipeline that takes 

advantage of LLMs — their capacity to process natural language 

queries and commonsense reasoning— while mitigating their 

limitations by combining a symbolic planner with a multimodal LLM 

and employing a replanning method when planner failures occurred. 

Our approach uses a multimodal LLM to analyze semantic 

relationships among target objects in the scene and a 2D open-

vocabulary object detection model to obtain the geometric information. 

Based on the scene and user-provided goal descriptions, the LLM 

encodes the planning problem using PDDL formulation. Given this 

problem PDDL and pre-defined domain PDDL, a symbolic PDDL 

planner finds a plan for the task, which is later translated into a low-

level code such as Python code with action parameter selection to 

invoke motion planning for robot execution. 

Throughout this whole process, replanning occurs when a failure is 

detected. When a symbolic PDDL planner fails to find a valid plan, 

LLM validates syntax and semantic errors in the problem PDDL, and 

we replan the task by reprompting the error messages to LLM as error 

feedback. If an exception occurs when executing the Python code, we 

replan the task by reprompting the exception messages to LLM. 

We also conducted experiments using a dual robot manipulator 

setup and an LLM across three task planning domains to demonstrate 

the effectiveness of our pipeline on diverse and complex robotic tasks.  

In summary, the main contributions of our work are: 

 

 

※ This work was supported in part by the ITRC/IITP program (IITP-2024-
RS-2020-II201460) and NRF (2022R1A2B5B03001385) in Korea. 

1. M.S. Student, Dept. of Computer Science and Engineering, Ewha 
Womans University, Seoul, Korea (minseo.kwon@ewha.ac.kr) 

† Professor, Corresponding author: Dept. of Computer Science and 

Engineering, Ewha Womans University, Seoul, Korea 
(kimy@ewha.ac.kr) 



거대 언어 모델을 이용한 뉴로-심볼릭 작업 재계획법 2 

 

- We propose a novel neuro-symbolic task replanning 

algorithm for executing various robotics tasks by combining 

symbolic planner and multimodal LLM and enabling LLM 

as a syntax and semantic checker. 

- We demonstrated the utility of our algorithmic pipeline on 

real-world robotic tasks. We also highlighted cases where 

planning failures occurred and showed how the LLM refined 

these failures. 

- We also demonstrated the effectiveness of replanning, 

showing that success rates increased by up to 31.92% 

compared to cases without replanning, while observing how 

the occurrence of each failure cause decreases. 

The rest of the paper is structured as follows. In Section 2, we 

overview relevant work to robot task planning using traditional 

methods and LLM-based methods. In Section 3, we outline the overall 

task replanning pipeline in four steps. In Section 4, we present the task 

planning results in real-world scenarios. Lastly, we conclude the paper 

and discuss the future work in Section 5. 

 

2. Related Works 
 

2.1 Symbolic Task Planning 
 

Symbolic task planning is based on a classical approach in AI 

planning, where tasks are represented using symbolic languages, such 

as PDDL [12]. This approach defines the world as a set of logical states 

and actions, where each action has preconditions and effects that 

change the state. Symbolic planners search these states, often using 

heuristics, to generate a sequence of actions that achieves a given goal.  

Additionally, advancements in hierarchical planning and the 

integration of symbolic task planning with motion planning (TAMP) 

have further improved performance [13]. A key factor for generalizing 

TAMP approaches lies between discrete high-level task planning and 

continuous low-level motion planning. This involves selecting hybrid 

action parameters, such as how to grasp or where to place an object, 

that satisfy constraints and control the system's allowable continuous 

motions. The downward refinement property assumes that every 

solution to the high-level task plan has a corresponding low-level 

motion solution. However, this assumption often does not hold in real-

world scenarios, limiting the practical application of TAMP in 

dynamic, real-world environments [12]. 

 

2.2 LLM-based Robot Task Planning 
  

LLM-based robot task planning utilizes LLMs to enhance 

understanding of the real world and generate action sequences that lead 

to the goal. For instance, [14] demonstrated that LLMs can effectively 

combine language understanding with action grounding, allowing 

robots to execute tasks based on their capabilities and real-world 

affordances. [15] also employed LLMs, prompting them with 

environmental state feedback to generate task plans in Python code 

incorporating robot action primitives. Additionally, research has 

focused on frameworks that utilize LLMs to generate spatial 

relationships between objects and provide motion planning feedback, 

addressing TAMP problems [16, 17]. However, despite these 

advantages, LLMs often encounter difficulties with large-scale tasks 

and may yield unreliable outputs in complex scenarios [2]. 

Integrating LLM with symbolic planners has also been a significant 

research area. [6] and [18] utilized LLMs as translators between the 

user's natural language and PDDL, converting natural language 

problem descriptions into PDDL problems through few-shot 

prompting [19]. However, these methods treat LLMs as translators 

and do not deal with situations when LLM-generated problem 

descriptions are incorrect. It also struggles with real-world scenarios 

where planning problems are not provided in natural language. [7] 

addressed TAMP problems by translating natural language problem 

descriptions into STL problem specifications and correcting their 

syntax and semantic errors through reprompting. However, this 

method is not directly applicable to robot manipulation tasks in real-

world scenes.  

Building on this, [5] combined LLMs with object detection and 

image captioning models to generate a problem specification, then 

solved by a symbolic PDDL planner. [9] presented a framework 

leveraging LLM's commonsense knowledge in household 

environments to reduce plan length generated by a symbolic PDDL 

planner. However, these approaches are limited as they primarily 

address task planning and do not extend to the low-level details 

required for robot execution, such as action parameter selection. 

 

2.3 Corrective Reprompting with LLM 
 

The concept of corrective reprompting [20] with LLMs has been 

explored to address planning errors caused by the LLM's hallucinatory 

outputs. [21] focused on detecting unmet action precondition errors in 

LLM-generated plans and reprompting the LLM to adjust actions 

accordingly. [11] incorporated the PDDL plan validator VAL[22] to 

identify errors in LLM-generated plans and refine them through 

interactive debugging. Additionally, [7] employed a rule-based STL 

syntax checker for syntax errors alongside an LLM correction module 

for semantic errors. 

In contrast, our approach utilizes a symbolic planner to ensure plan 

success without relying on external syntax checkers or verifiers. 

Moreover, we address both syntax and semantic errors in the planning 

problem formulation using a zero-shot approach with our automatic 

LLM reprompting. 

 

3. Task Replanning Pipeline 
 

Our task planning algorithm consists of four parts: planning 

formulation, task planning with symbolic planner, low-level code 

generation, and replanning with syntax and semantic checking. The 

overall pipeline is shown in [Fig. 1]. We will go through each step in 

the following subsections.  

 

3.1 Planning Formulation 
 

Our objective is to generate a problem PDDL, which can be 

formulated as below: 
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Fig. 1. Our neuro-symbolic task replanning pipeline. The green blocks represent the use of LLM, and the orange blocks represent symbolic 

planning using symbolic languages. Red arrows show two cases of replanning, where the first arrow indicates syntax/semantic errors in problem 

formulation, and the second one contains Python exceptions in low-level codes. 

 

𝑃 ≡ < 𝑆, 𝑂, 𝐴, 𝑇, 𝑠0, 𝑆∗ >                          (1) 

 

where 𝑆 is a finite set of all possible fully observable states, 𝑂 is 

environment objects, 𝐴 is a finite set of possible actions, 𝑇: 𝑆 ×

𝐴 → 𝑆  is a deterministic state transition function, 𝑠0 ∈ 𝑆  is an 

initial state, and 𝑆∗ ⊂ 𝑆 is a set of goal states.  

To enable the robot to interpret the initial scene and encode it into 

PDDL, we need to gather information about the types of objects in 

the environment and their spatial relationships. We use GPT-4-

Vision as multimodal LLM to simultaneously understand image and 

text prompts. By providing a color image from the robot's 

perspective together with the prompt, “What objects are on the table? 

Tell me each of their appearance and spatial relationships.”, the 

LLM can generate a scene description about the objects on the table, 

including their relative position, and spatial relationships.  

Using this scene description, along with the user-provided goal 

task, domain PDDL, and a one-shot example, the LLM formulates 

the planning problem 𝑃. Moreover, instead of relying on multiple 

in-context examples, we use one-shot prompting [19] to improve the 

LLM's output [3]. Furthermore, LLM can obtain information about 

PDDL predicates from the domain PDDL. 

The objects identified in the scene description become the set 

𝑂(e.g., (:objects red_block green_block blue_block)), later serving 

as parameters for PDDL actions and predicates. From the spatial 

relationships between objects along with the positions of the objects 

(e.g., “the red block is on top of the blue block and green block is on 

top of red block”), we translate it into predicates (e.g., (on red_block 

blue_block) (on green_block red_block)) and this set of predicates 

form the initial state 𝑠0. Additionally, based on the user-provided 

goal task, the LLM translates the goal into a PDDL goal description 

(), forming 𝑆∗ . The remaining components 𝑆 , 𝐴  and  𝑇  are 

derived from the domain PDDL. 

 

3.2 Task Planning with Symbolic Planner 
 

Once the planning problem 𝑃 is formulated, the objective is to 

use a symbolic task planner to find a policy 𝜋 =

{𝑎1, ⋯ , 𝑎𝑛| ∀𝑎𝑖 ∈ 𝐴} for 𝑃. The generated problem PDDL and 

domain PDDL are then put into a search-based symbolic planner to 

produce a plan PDDL. We utilize the Fast Downward planner [23], 

specifically employing the "seq-opt-fdss-1" configuration.  

Planning is successful if the Fast Downward planner generates a 

PDDL plan starting from the initial state 𝑠0 and reaches one of the 

possible goal states 𝑠𝑔 ∈  𝑆∗  within the given search time limit. 

The planning attempt is considered unsuccessful if the planner fails 

to generate such a plan within the time limit. 

 

3.3 Low-Level Code Generation 
 

As mentioned in Section 2.1, to execute the high-level plan 

obtained from task planning, it is necessary to search for hybrid 

action parameters that satisfy constraints and then call the motion 

planner [13]. Similarly, in our pipeline, the plan PDDL generated by 

the symbolic planner is converted into Python code. We prompt the 

LLM to translate each action 𝑎𝑖  from the plan PDDL into 

predefined Python action primitives, such as ‘pick_up_object’ and 

‘place_object’ [24]. By calling these primitives, the motion planner 

[25] is invoked, and the robot will execute the path. While the PDDL 

actions are high-level, including discrete and semantic parameters 

such as object names, these action primitives are low-level, requiring 

continuous and real-valued parameters, such as the grasp or place 

poses for each object. Therefore, the intermediate process of 

selecting action parameters for Python action primitives is necessary.  

In most TAMP systems where the downward refinement 

property is not satisfied, these parameters must satisfy constraints 

like collision avoidance and robot joint limits. If any constraints are 

violated, the system backtracks and tries alternative high-level plans 

[13]. But for simplicity, we assume that the downward refinement 

property holds, which means no such constraints exist in our real-

world scene. 

The process for determining action parameters is as follows. We 

use a 2D open-vocabulary object detection model to compute the 

bounding boxes of target objects. Leveraging the scene description 

provided by the multimodal LLM, the LLM assigns names to 

objects, and these names, along with the detection model, help 

generate 2D bounding boxes. These 2D bounding boxes are then 

expanded into 3D by integrating depth information from segmented 

object masks captured by an RGB-D camera from the robot's 

perspective. We employ Grounded-Segment-Anything [26] as the 

object detection model, which combines Grounding DINO [27] and 
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Fig. 2. Demonstration of a pick-and-place task using a physical robot and our planning pipeline. Initially, three RGB-colored blocks are placed 

in a row next to the basket (leftmost image). The goal is to identify the closest block to the basket and drop it into the basket (rightmost image). 

 

 

Fig. 3. Demonstration of a block stacking. In this case, the blocks are stacked in blue, red, and green from top to bottom (leftmost image). The 

goal is to restack the blocks in the order of green, red, and blue from top to bottom on the right side of the table (rightmost image). 

 

 

Fig. 4. Demonstration of a block rearrangement. Initially, blue, red, and green blocks with the letters Y, Z, and X are arranged from left to right 

(leftmost image). The goal is to rearrange the blocks in alphabetical order from left to right: X, Y, and Z (rightmost image).

Segment Anything [28]. Then, a grasp pose selection algorithm 

[29] is applied within the 3D bounding boxes, and the resulting 

grasp pose serves as the continuous parameter for the 'pick' action. 

For the 'place' action, continuous parameters are set based on 

predefined positions for different table sections. 

 

3.4 Replanning with Syntax and Semantic Checking 
 

Given that the LLM may produce erroneous outputs, we have 

integrated an automatic replanning module to prevent program 

interruptions caused by failures. This module detects planning 

failures and reprompts the LLM to resolve the issues. Failures 

within the pipeline typically stem from two main sources: errors in 

problem PDDL generation and low-level code generation. 

Errors in problem PDDL generally fall into two categories: 

syntax and semantic errors. Syntax errors, such as misplaced 

parentheses or incorrect object names in the set 𝑂 , cause the 

planner to terminate during the parsing stage due to invalid PDDL 

inputs. Semantic errors occur when the initial state 𝑠0 does not 

match the actual scene or when the goal description 𝑆∗ misaligns 

with the user's intended goal. As a result, the planner is unable to 

find a valid path from state 𝑠0 to any goal state 𝑠𝑔 ∈  𝑆∗ leading 

to a dead end. In both cases, LLM is reprompted using the planner 

output and a zero-shot Chain of Thought (CoT) [30] prompt, 

guiding it to analyze the planner error message. If a syntax error is 

detected, the LLM corrects the problem by fixing the incorrect 

syntax. When a semantic error is identified, the LLM adjusts 𝑠0 

or 𝑆∗ or both, and refines the planning problem 𝑃. 

While Python code errors are less frequent than problem PDDL 

errors, they typically involve simple runtime issues, such as LLM 

using incorrect action names or neglecting to define action 

primitive parameters before using it. In such cases, the LLM is 

similarly reprompted with the Python exception message and a 

zero-shot CoT prompt to correct the code. 

 

4. Experiments 
 

4.1 Experimental Setup 
 

The experiments used an Intel Core i9 CPU and NVIDIA RTX 

Ada 6000 GPU. For the physical robot setup, we used UR5e dual 

manipulators, each equipped with Robotiq 3F grippers and an Intel 

RealSense D455 RGBD camera mounted above the table for a top-

down view. We utilized GPT-4-Turbo [31] as the multimodal 

LLM and Fast Downward [23] as the symbolic PDDL planner. 

All experiments were based on a PDDL domain inspired by the 

well-known Blocksworld domain. Additionally, the table was 

divided into six sections, with the position of each section specified 

in the prompts. 
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4.2 Robot Demonstration 
 
4.2.1 Pick and Place 

The first experiment involved a simple pick-and-place task. As 

in [Fig. 2], three colored blocks—red, green, and blue—and a 

basket were placed on the table. Given the user's goal task, "Move 

the closest block into the basket," the system identified the block 

nearest to the basket and then planned the corresponding action 

sequence. 

 

4.2.2 Block Stacking 

The second experiment focused on stacking blocks in a 

specified order. As in [Fig. 3], three blocks were initially stacked at 

the center of the table. The user's goal was to "Stack the blocks in a 

new order at the right side of the table. Red at the bottom, green in 

the middle, and blue at the top.", the LLM identified the current 

stack order and position (e.g., near the center, left, right) and 

generated the problem specification. The robot then unstacked the 

blocks from top to bottom and stacked the blocks in the specified 

order. 

 

4.2.3 Block Rearrangement 

The third experiment was rearranging blocks in alphabetical 

order based on letters marked on them. Given the user command 

"Rearrange the blocks in alphabetic order from left to right, based 

on the letters on the top.", the LLM recognized the letters on each 

block and their initial positions. Using its alphabet knowledge, the 

LLM generated a problem description to rearrange the blocks in 

the order X, Y, and Z from left to right, as shown in [Fig. 4]. 

This task demonstrated the capability of the LLM to perceive 

detailed attributes of the blocks, such as letters and abstract 

positions. 

 

4.3 Experiment Results 

 

Table 1. Success and failure rates (%) without replanning 

Domain Problem failure Python 

failure 

Success 

rates syntax semantic 

Stack 6.6 16.7 3.3 73.3 

Rearrange 3.3 3.3 0 93.3 

 

Table 2. Success and failure rates (%) with replanning 

Domain Problem failure Python 

failure 

Success 

rates syntax semantic 

Stack 0 3.3 0 96.7 

Rearrange 0 0 0 100 

 

[Table 1] and [Table 2] summarize the success rates and failure 

causes for two domains, Block Stacking and Block Rearrangement, 

comparing cases with and without replanning. For each domain, 

30 initial scenes and goal descriptions were randomly generated, 

and we observed whether problem PDDL generation, task 

planning, and low-level code execution succeeded. 

Without replanning, the Block Stacking domain had a success 

rate of 73.3%. Among the failures, the most common cause was 

problem PDDL semantic errors, followed by problem PDDL 

syntax errors and failures caused by Python exceptions. In the 

Block Rearrangement domain, the success rate was higher at 

93.3%, with problem PDDL semantic and syntax errors each 

accounting for 3.3% of failures, and no Python failures observed. 

The lower success rate in Block Stacking is likely due to difficulties 

the multimodal LLM had in accurately capturing the spatial 

relationships between stacked blocks for the PDDL initial state. 

In both domains, problem PDDL semantic errors were 

primarily caused by confusion between the on-table predicate 

(indicating a block on the table) and the on predicate (representing 

the relationship between blocks). Problem PDDL syntax errors 

were typically due to incorrect domain names or improper PDDL 

formatting. Python failures arose when the pose variable was used 

in the action primitive without being retrieved by the 

get_grasp_pose function first. 

Limiting the number of replanning attempts to four, we 

observed a significant increase in success rates, approaching 

almost 100% in both domains. Notably, the rate of problem PDDL 

syntax errors and Python failures dropped to zero with replanning, 

demonstrating the effectiveness of our LLM-based replanning 

method in ensuring plan correctness. 

 

5. Conclusion and Future Work 
 

In this paper, we proposed a neuro-symbolic task replanning 

pipeline that integrates multimodal LLMs and symbolic planners 

to address challenges in robot task planning. By leveraging LLMs' 

commonsense and reasoning abilities, our system generates 

problem specifications, uses a symbolic planner to find a plan, and 

converts it into low-level code with action parameter selection. We 

introduced an automatic replanning module to resolve failures 

during planning and demonstrated the system’s effectiveness in 

real-world tasks with dual robot manipulators, showing improved 

success rates with replanning. 

While our approach assumes the downward refinement 

property for simple scenarios, it does not fully account for real-

world complexities. Future work will focus on developing a 

complete TAMP algorithm that handles cases where downward 

refinement does not hold, addressing these real-world constraints. 
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